I am using an Arduino uno with a Ethernet shield, DS18B20 temp sensor along with this incredible Blynk app to monitor my outdoor wood boiler. I originally had a issue with cycling a relay to turn the exterior light on with a Button widget because i did not use the Simple timer function to control the frequency of a Blynk.virtualWrite(). This solved my issue but has caused another and now I am stuck. Before I was using Blynk.virtualWrite() with the history graph to graph the boiler temperature and it was graphing beautifully until I deployed the SimpleTimer function to correct my flooding issue. I am also graphing when the fan and damper is open or closed. Now when I try to graph the boiler temperature the temperature appears to be way out of line and steadily increasing but the readout on the LCD is correct???
I was wondering if someone would be able to take a look at my code to see if anything stood out as to where my issue may be.
Photo without V7 selected on history graph;
Photo with V7 selected.
Here is the code… I know its ugly…
// Wiring Guide
// Fan switch- wire from 5V through fan suction switch to Pin 3
// DS18b20 wiring - Red wire goes to 5V, Black Wire goes to Ground, White Wire goes to pin 7
// Thermistor for outside temp- 5v to one side of thermistor other side of thermistor with 10K OHMS risistor to A0
// other side of risistor to ground http://www.circuitbasics.com/arduino-thermistor-temperature-sensor-tutorial/
// RELAY1 wire to pin 5
// RELAY2 wire to pin 9
// RELAY3 wire to pin 2
// Temp Sensor A0 white wire- Red 5v - Black Ground
#define BLYNK_PRINT Serial // Enables Serial Monitor
#include <SPI.h>
#include <Ethernet.h>
#include <BlynkSimpleEthernet.h> // This part is for Ethernet stuff
#include <OneWire.h>
#include <SimpleTimer.h>
const int buttonPin1 = 3;
WidgetLED led3(V3);
const int buttonPin2 = 4;
WidgetLED led4(V4);
WidgetLCD lcd(V1);
SimpleTimer timer;
OneWire ds(7); // on pin 10 (a 4.7K resistor is necessary)
int buttonState = 0;
char auth[] = "xxxxxxxxxxxxxxxxxxxxxx"; // Put your Auth Token here. (see Step 3 above)
#define RELAY1 5
#define RELAY2 9
#define RELAY3 2
void setup()
{
Serial.begin(9600); // See the connection status in Serial Monitor
Blynk.begin(auth); // Here your Arduino connects to the Blynk Cloud.
pinMode(RELAY1, OUTPUT);
pinMode(RELAY2, OUTPUT);
pinMode(RELAY3, OUTPUT);
digitalWrite(RELAY1, HIGH);
digitalWrite(RELAY2, HIGH);
digitalWrite(RELAY3, HIGH);
pinMode(buttonPin1, INPUT);
pinMode(buttonPin2, INPUT);
timer.setInterval(1000L, sendUptime);
}
void sendUptime()
{
Blynk.virtualWrite(V7, millis() / 1000);
}
void loop()
{
Blynk.run(); // All the Blynk Magic happens here...
timer.run();
// You can inject your own code or combine it with other sketches.
// Check other examples on how to communicate with Blynk. Remember
// to avoid delay() function!
delay(100);
byte i;
byte present = 0;
byte type_s;
byte data[12];
byte addr[8];
float celsius, fahrenheit;
if ( !ds.search(addr)) {
Serial.println("No more addresses.");
Serial.println();
ds.reset_search();
delay(250);
return;
}
Serial.print("ROM =");
for ( i = 0; i < 8; i++) {
Serial.write(' ');
Serial.print(addr[i], HEX);
}
if (OneWire::crc8(addr, 7) != addr[7]) {
Serial.println("CRC is not valid!");
return;
}
Serial.println();
// the first ROM byte indicates which chip
switch (addr[0]) {
case 0x10:
Serial.println(" Chip = DS18S20"); // or old DS1820
type_s = 1;
break;
case 0x28:
Serial.println(" Chip = DS18B20");
type_s = 0;
break;
case 0x22:
Serial.println(" Chip = DS1822");
type_s = 0;
break;
default:
Serial.println("Device is not a DS18x20 family device.");
return;
}
ds.reset();
ds.select(addr);
ds.write(0x44, 1); // start conversion, with parasite power on at the end
delay(1000); // maybe 750ms is enough, maybe not
// we might do a ds.depower() here, but the reset will take care of it.
present = ds.reset();
ds.select(addr);
ds.write(0xBE); // Read Scratchpad
Serial.print(" Data = ");
Serial.print(present, HEX);
Serial.print(" ");
for ( i = 0; i < 9; i++) { // we need 9 bytes
data[i] = ds.read();
Serial.print(data[i], HEX);
Serial.print(" ");
}
Serial.print(" CRC=");
Serial.print(OneWire::crc8(data, 8), HEX);
Serial.println();
// Convert the data to actual temperature
// because the result is a 16 bit signed integer, it should
// be stored to an "int16_t" type, which is always 16 bits
// even when compiled on a 32 bit processor.
int16_t raw = (data[1] << 8) | data[0];
if (type_s) {
raw = raw << 3; // 9 bit resolution default
if (data[7] == 0x10) {
// "count remain" gives full 12 bit resolution
raw = (raw & 0xFFF0) + 12 - data[6];
}
} else {
byte cfg = (data[4] & 0x60);
// at lower res, the low bits are undefined, so let's zero them
if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
//// default is 12 bit resolution, 750 ms conversion time
}
celsius = (float)raw / 16.0;
fahrenheit = celsius * 1.8 + 32.0;
Serial.print(" Temperature = ");
Serial.print(celsius);
Serial.print(" Celsius, ");
Serial.print(fahrenheit);
Serial.println(" Fahrenheit");
Blynk.virtualWrite(V7, fahrenheit);
lcd.clear();
lcd.print(0, 0, "Boiler Temp");
lcd.print(0, 1, fahrenheit);
if ( fahrenheit>=180){
Blynk.notify("Boiler Temp High!");
}
buttonState = digitalRead(buttonPin1);
if (buttonState == LOW) {
// turn LED on:
led3.on();
} else {
// turn LED off:
led3.off();
}
buttonState = digitalRead(buttonPin2);
if (buttonState == LOW) {
// turn LED on:
led4.on();
} else {
// turn LED off:
led4.off();
}
}
BLYNK_WRITE(5)
{
int i=param.asInt();
if (i==1)
{
digitalWrite (RELAY1,LOW);
}
else if ((i==0))
{
digitalWrite(RELAY1,HIGH);
}
}
BLYNK_WRITE(9)
{
int i=param.asInt();
if (i==1)
{
digitalWrite (RELAY2,LOW);
}
else if ((i==0))
{
digitalWrite(RELAY2,HIGH);
}
}
BLYNK_WRITE(2)
{
int i=param.asInt();
if (i==1)
{
digitalWrite (RELAY3,LOW);
}
else if ((i==0))
{
digitalWrite(RELAY3,HIGH);
}
}