Bluetooth wont connect

Hi, I’m attempting to build a follow me cooler much like hacker house did 4 years ago. I’ve recreated the code attached below and in Arduino, it says it’s okay but I’m having trouble keeping Bluetooth connected. My Bluetooth module is HC-05. I am using a Samsung A11. the only code I could find related to Bluetooth in their sample code was the authentication token and Bluetooth serial. i keep getting a “cant connect. something went wrong when connecting to your Bluetooth device. please try again later.” the connection light on the b Bluetooth module also blinks rapidly then slowly when i pair with my phone but refuses to connect in blynk.

• Blynk Library version: 0.6.1

SoftwareSerial bluetoothSerial(BLUETOOTH_TX_PIN, BLUETOOTH_RX_PIN);
//Bluetooth
  bluetoothSerial.begin(38400);
  Blynk.begin(bluetoothSerial, auth);

Seeing your full sketch, and knowing what type of board you are using would help.

Have you added the BT widget to your project?

Pete.

Hi, Pete thanks for reaching out my full code is this. Im new to this so heres my github repository where I put all the code for it Link. I am using a Arduino uno clone called elegoo uno R3. I have added a Bluetooth widget, kill switch, terminal, and gps. heres a screenshot.

#define BLYNK_USE_DIRECT_CONNECT

// Imports
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_HMC5883_U.h>
#include <Servo.h>
#include <SoftwareSerial.h>
#include <BlynkSimpleSerialBLE.h>
#include "./TinyGPS.h"                 // Use local version of this library
#include "./CoolerDefinitions.h"

// GPS
TinyGPS gps;

// Lid
Servo lidServo;
CoolerLid lidState = CLOSED;

// Master Enable
bool enabled = false;

//WidgetTerminal terminal(V3);

// Serial components
SoftwareSerial bluetoothSerial(BLUETOOTH_TX_PIN, BLUETOOTH_RX_PIN);
SoftwareSerial nss(GPS_TX_PIN, 255);            // TXD to digital pin 6

/* Compass */
Adafruit_HMC5883_Unified mag = Adafruit_HMC5883_Unified(12345);

GeoLoc checkGPS() {
  Serial.println("Reading onboard GPS: ");
  bool newdata = false;
  unsigned long start = millis();
  while (millis() - start < GPS_UPDATE_INTERVAL) {
    if (feedgps())
      newdata = true;
  }
  if (newdata) {
    return gpsdump(gps);
  }

  GeoLoc coolerLoc;
  coolerLoc.lat = 0.0;
  coolerLoc.lon = 0.0;
  
  return coolerLoc;
}

// Get and process GPS data
GeoLoc gpsdump(TinyGPS &gps) {
  float flat, flon;
  unsigned long age;
  
  gps.f_get_position(&flat, &flon, &age);

  GeoLoc coolerLoc;
  coolerLoc.lat = flat;
  coolerLoc.lon = flon;

  Serial.print(coolerLoc.lat, 7); Serial.print(", "); Serial.println(coolerLoc.lon, 7);

  return coolerLoc;
}

// Feed data as it becomes available 
bool feedgps() {
  while (nss.available()) {
    if (gps.encode(nss.read()))
      return true;
  }
  return false;
}

// Lid Hook
BLYNK_WRITE(V0) {
  switch (lidState) {
    case OPENED:
      setServo(SERVO_LID_CLOSE);
      lidState = CLOSED;
      break;
    case CLOSED:
      setServo(SERVO_LID_OPEN);
      lidState = OPENED;
      break;
  }
}

// Killswitch Hook
BLYNK_WRITE(V1) {
  enabled = !enabled;
  
  //Stop the wheels
  stop();
}

// GPS Streaming Hook
BLYNK_WRITE(V2) {
  GpsParam gps(param);
  
  Serial.println("Received remote GPS: ");
  
  // Print 7 decimal places for Lat
  Serial.print(gps.getLat(), 7); Serial.print(", "); Serial.println(gps.getLon(), 7);

  GeoLoc phoneLoc;
  phoneLoc.lat = gps.getLat();
  phoneLoc.lon = gps.getLon();

  driveTo(phoneLoc, GPS_STREAM_TIMEOUT);
}

// Terminal Hook
BLYNK_WRITE(V3) {
  Serial.print("Received Text: ");
  Serial.println(param.asStr());

  String rawInput(param.asStr());
  int colonIndex;
  int commaIndex;
  
  do {
    commaIndex = rawInput.indexOf(',');
    colonIndex = rawInput.indexOf(':');
    
    if (commaIndex != -1) {
      String latStr = rawInput.substring(0, commaIndex);
      String lonStr = rawInput.substring(commaIndex+1);

      if (colonIndex != -1) {
         lonStr = rawInput.substring(commaIndex+1, colonIndex);
      }
    
      float lat = latStr.toFloat();
      float lon = lonStr.toFloat();
    
      if (lat != 0 && lon != 0) {
        GeoLoc waypoint;
        waypoint.lat = lat;
        waypoint.lon = lon;
    
        Serial.print("Waypoint found: "); Serial.print(lat); Serial.println(lon);
        driveTo(waypoint, GPS_WAYPOINT_TIMEOUT);
      }
    }
    
    rawInput = rawInput.substring(colonIndex + 1);
    
  } while (colonIndex != -1);
}

void displayCompassDetails(void)
{
  sensor_t sensor;
  mag.getSensor(&sensor);
  Serial.println("------------------------------------");
  Serial.print  ("Sensor:       "); Serial.println(sensor.name);
  Serial.print  ("Driver Ver:   "); Serial.println(sensor.version);
  Serial.print  ("Unique ID:    "); Serial.println(sensor.sensor_id);
  Serial.print  ("Max Value:    "); Serial.print(sensor.max_value); Serial.println(" uT");
  Serial.print  ("Min Value:    "); Serial.print(sensor.min_value); Serial.println(" uT");
  Serial.print  ("Resolution:   "); Serial.print(sensor.resolution); Serial.println(" uT");  
  Serial.println("------------------------------------");
  Serial.println("");
  delay(500);
}

#ifndef DEGTORAD
#define DEGTORAD 0.0174532925199432957f
#define RADTODEG 57.295779513082320876f
#endif

float geoBearing(struct GeoLoc &a, struct GeoLoc &b) {
  float y = sin(b.lon-a.lon) * cos(b.lat);
  float x = cos(a.lat)*sin(b.lat) - sin(a.lat)*cos(b.lat)*cos(b.lon-a.lon);
  return atan2(y, x) * RADTODEG;
}

float geoDistance(struct GeoLoc &a, struct GeoLoc &b) {
  const float R = 6371000; // km
  float p1 = a.lat * DEGTORAD;
  float p2 = b.lat * DEGTORAD;
  float dp = (b.lat-a.lat) * DEGTORAD;
  float dl = (b.lon-a.lon) * DEGTORAD;

  float x = sin(dp/2) * sin(dp/2) + cos(p1) * cos(p2) * sin(dl/2) * sin(dl/2);
  float y = 2 * atan2(sqrt(x), sqrt(1-x));

  return R * y;
}

float geoHeading() {
  /* Get a new sensor event */ 
  sensors_event_t event; 
  mag.getEvent(&event);

  // Hold the module so that Z is pointing 'up' and you can measure the heading with x&y
  // Calculate heading when the magnetometer is level, then correct for signs of axis.
  float heading = atan2(event.magnetic.y, event.magnetic.x);

  // Offset
  heading -= DECLINATION_ANGLE;
  heading -= COMPASS_OFFSET;
  
  // Correct for when signs are reversed.
  if(heading < 0)
    heading += 2*PI;
    
  // Check for wrap due to addition of declination.
  if(heading > 2*PI)
    heading -= 2*PI;
   
  // Convert radians to degrees for readability.
  float headingDegrees = heading * 180/M_PI; 

  // Map to -180 - 180
  while (headingDegrees < -180) headingDegrees += 360;
  while (headingDegrees >  180) headingDegrees -= 360;

  return headingDegrees;
}

void setServo(int pos) {
  lidServo.attach(SERVO_PIN);
  lidServo.write(pos);
  delay(2000);
  lidServo.detach();
}

void setSpeedMotorA(int speed) {
  digitalWrite(MOTOR_A_IN_1_PIN, LOW);
  digitalWrite(MOTOR_A_IN_2_PIN, HIGH);
  
  // set speed to 200 out of possible range 0~255
  analogWrite(MOTOR_A_EN_PIN, speed + MOTOR_A_OFFSET);
}

void setSpeedMotorB(int speed) {
  digitalWrite(MOTOR_B_IN_1_PIN, LOW);
  digitalWrite(MOTOR_B_IN_2_PIN, HIGH);
  
  // set speed to 200 out of possible range 0~255
  analogWrite(MOTOR_B_EN_PIN, speed + MOTOR_B_OFFSET);
}

void setSpeed(int speed)
{
  // this function will run the motors in both directions at a fixed speed
  // turn on motor A
  setSpeedMotorA(speed);

  // turn on motor B
  setSpeedMotorB(speed);
}

void stop() {
  // now turn off motors
  digitalWrite(MOTOR_A_IN_1_PIN, LOW);
  digitalWrite(MOTOR_A_IN_2_PIN, LOW);  
  digitalWrite(MOTOR_B_IN_1_PIN, LOW);
  digitalWrite(MOTOR_B_IN_2_PIN, LOW);
}

void drive(int distance, float turn) {
  int fullSpeed = 230;
  int stopSpeed = 0;

  // drive to location
  int s = fullSpeed;
  if ( distance < 8 ) {
    int wouldBeSpeed = s - stopSpeed;
    wouldBeSpeed *= distance / 8.0f;
    s = stopSpeed + wouldBeSpeed;
  }
  
  int autoThrottle = constrain(s, stopSpeed, fullSpeed);
  autoThrottle = 230;

  float t = turn;
  while (t < -180) t += 360;
  while (t >  180) t -= 360;
  
  Serial.print("turn: ");
  Serial.println(t);
  Serial.print("original: ");
  Serial.println(turn);
  
  float t_modifier = (180.0 - abs(t)) / 180.0;
  float autoSteerA = 1;
  float autoSteerB = 1;

  if (t < 0) {
    autoSteerB = t_modifier;
  } else if (t > 0){
    autoSteerA = t_modifier;
  }

  Serial.print("steerA: "); Serial.println(autoSteerA);
  Serial.print("steerB: "); Serial.println(autoSteerB);

  int speedA = (int) (((float) autoThrottle) * autoSteerA);
  int speedB = (int) (((float) autoThrottle) * autoSteerB);
  
  setSpeedMotorA(speedA);
  setSpeedMotorB(speedB);
}

void driveTo(struct GeoLoc &loc, int timeout) {
  nss.listen();
  GeoLoc coolerLoc = checkGPS();
  bluetoothSerial.listen();

  if (coolerLoc.lat != 0 && coolerLoc.lon != 0 && enabled) {
    float d = 0;
    //Start move loop here
    do {
      nss.listen();
      coolerLoc = checkGPS();
      bluetoothSerial.listen();
      
      d = geoDistance(coolerLoc, loc);
      float t = geoBearing(coolerLoc, loc) - geoHeading();
      
      Serial.print("Distance: ");
      Serial.println(geoDistance(coolerLoc, loc));
    
      Serial.print("Bearing: ");
      Serial.println(geoBearing(coolerLoc, loc));

      Serial.print("heading: ");
      Serial.println(geoHeading());
      
      drive(d, t);
      timeout -= 1;
    } while (d > 3.0 && enabled && timeout>0);

    stop();
  }
}

void setupCompass() {
   /* Initialise the compass */
  if(!mag.begin())
  {
    /* There was a problem detecting the HMC5883 ... check your connections */
    Serial.println("Ooops, no HMC5883 detected ... Check your wiring!");
    while(1);
  }
  
  /* Display some basic information on this sensor */
  displayCompassDetails();
}

void setup()
{
  // Compass
  setupCompass();

  // Motor pins
  pinMode(MOTOR_A_EN_PIN, OUTPUT);
  pinMode(MOTOR_B_EN_PIN, OUTPUT);
  pinMode(MOTOR_A_IN_1_PIN, OUTPUT);
  pinMode(MOTOR_A_IN_2_PIN, OUTPUT);
  pinMode(MOTOR_B_IN_1_PIN, OUTPUT);
  pinMode(MOTOR_B_IN_2_PIN, OUTPUT);
  
  pinMode(LED_BUILTIN, OUTPUT);
  digitalWrite(LED_BUILTIN, HIGH);

  //Debugging via serial
  Serial.begin(4800);

  //GPS
  nss.begin(9600);

  //Bluetooth
  bluetoothSerial.begin(38400);
  Blynk.begin(bluetoothSerial, auth);
}

// Testing
void testDriveNorth() {
  float heading = geoHeading();
  int testDist = 10;
  Serial.println(heading);
  
  while(!(heading < 5 && heading > -5)) {
    drive(testDist, heading);
    heading = geoHeading();
    Serial.println(heading);
    delay(500);
  }
  
  stop();
}

void loop()
{
  Blynk.run();
}
// Blynk Auth
char auth[] = "FxwInNKuU9p2dmTzOpDkMxrkysB6QIg1";

// Pin variables
#define SERVO_PIN 3

#define GPS_TX_PIN 4
#define GPS_RX_PIN 3

#define BLUETOOTH_TX_PIN 10
#define BLUETOOTH_RX_PIN 11

#define MOTOR_A_EN_PIN 5
#define MOTOR_B_EN_PIN 9
#define MOTOR_A_IN_1_PIN 7
#define MOTOR_A_IN_2_PIN 8
#define MOTOR_B_IN_1_PIN 12
#define MOTOR_B_IN_2_PIN 6

// If one motor tends to spin faster than the other, add offset
#define MOTOR_A_OFFSET 10
#define MOTOR_B_OFFSET 10

// You must then add your 'Declination Angle' to the compass, which is the 'Error' of the magnetic field in your location.
// Find yours here: http://www.magnetic-declination.com/
// Mine is: 13° 24' E (Positive), which is ~13 Degrees, or (which we need) 0.23 radians
#define DECLINATION_ANGLE 0.10f

// The offset of the mounting position to true north
// It would be best to run the /examples/magsensor sketch and compare to the compass on your smartphone
#define COMPASS_OFFSET 0.0f

// How often the GPS should update in MS
// Keep this above 1000
#define GPS_UPDATE_INTERVAL 1000

// Number of changes in movement to timeout for GPS streaming
// Keeps the cooler from driving away if there is a problem
#define GPS_STREAM_TIMEOUT 18

// Number of changes in movement to timeout for GPS waypoints
// Keeps the cooler from driving away if there is a problem
#define GPS_WAYPOINT_TIMEOUT 45

// PWM write for servo locations
#define SERVO_LID_OPEN 20
#define SERVO_LID_CLOSE 165

// Definitions (don't edit these)
struct GeoLoc {
  float lat;
  float lon;
};

enum CoolerLid {
  OPENED,
  CLOSED
};
#include "Arduino.h"
#include "TinyGPS.h"

#define _GPRMC_TERM   "GPRMC"
#define _GPGGA_TERM   "GPGGA"

TinyGPS::TinyGPS()
:  _time(GPS_INVALID_TIME)
,  _date(GPS_INVALID_DATE)
,  _latitude(GPS_INVALID_ANGLE)
,  _longitude(GPS_INVALID_ANGLE)
,  _altitude(GPS_INVALID_ALTITUDE)
,  _speed(GPS_INVALID_SPEED)
,  _course(GPS_INVALID_ANGLE)
,  _last_time_fix(GPS_INVALID_FIX_TIME)
,  _last_position_fix(GPS_INVALID_FIX_TIME)
,  _parity(0)
,  _is_checksum_term(false)
,  _sentence_type(_GPS_SENTENCE_OTHER)
,  _term_number(0)
,  _term_offset(0)
,  _gps_data_good(false)
#ifndef _GPS_NO_STATS
,  _encoded_characters(0)
,  _good_sentences(0)
,  _failed_checksum(0)
#endif
{
  _term[0] = '\0';
}

//
// public methods
//

bool TinyGPS::encode(char c)
{
  bool valid_sentence = false;

  ++_encoded_characters;
  switch(c)
  {
  case ',': // term terminators
    _parity ^= c;
  case '\r':
  case '\n':
  case '*':
    if (_term_offset < sizeof(_term))
    {
      _term[_term_offset] = 0;
      valid_sentence = term_complete();
    }
    ++_term_number;
    _term_offset = 0;
    _is_checksum_term = c == '*';
    return valid_sentence;

  case '$': // sentence begin
    _term_number = _term_offset = 0;
    _parity = 0;
    _sentence_type = _GPS_SENTENCE_OTHER;
    _is_checksum_term = false;
    _gps_data_good = false;
    return valid_sentence;
  }

  // ordinary characters
  if (_term_offset < sizeof(_term) - 1)
    _term[_term_offset++] = c;
  if (!_is_checksum_term)
    _parity ^= c;

  return valid_sentence;
}

#ifndef _GPS_NO_STATS
void TinyGPS::stats(unsigned long *chars, unsigned short *sentences, unsigned short *failed_cs)
{
  if (chars) *chars = _encoded_characters;
  if (sentences) *sentences = _good_sentences;
  if (failed_cs) *failed_cs = _failed_checksum;
}
#endif

//
// internal utilities
//
int TinyGPS::from_hex(char a) 
{
  if (a >= 'A' && a <= 'F')
    return a - 'A' + 10;
  else if (a >= 'a' && a <= 'f')
    return a - 'a' + 10;
  else
    return a - '0';
}

unsigned long TinyGPS::parse_decimal()
{
  char *p = _term;
  bool isneg = *p == '-';
  if (isneg) ++p;
  unsigned long ret = 100UL * gpsatol(p);
  while (gpsisdigit(*p)) ++p;
  if (*p == '.')
  {
    if (gpsisdigit(p[1]))
    {
      ret += 10 * (p[1] - '0');
      if (gpsisdigit(p[2]))
        ret += p[2] - '0';
    }
  }
  return isneg ? -ret : ret;
}

unsigned long TinyGPS::parse_degrees()
{
  char *p;
  unsigned long left = gpsatol(_term);
  unsigned long tenk_minutes = (left % 100UL) * 10000UL;
  for (p=_term; gpsisdigit(*p); ++p);
  if (*p == '.')
  {
    unsigned long mult = 1000;
    while (gpsisdigit(*++p))
    {
      tenk_minutes += mult * (*p - '0');
      mult /= 10;
    }
  }
  return (left / 100) * 100000 + tenk_minutes / 6;
}

// Processes a just-completed term
// Returns true if new sentence has just passed checksum test and is validated
bool TinyGPS::term_complete()
{
  if (_is_checksum_term)
  {
    byte checksum = 16 * from_hex(_term[0]) + from_hex(_term[1]);
    if (checksum == _parity)
    {
      if (_gps_data_good)
      {
#ifndef _GPS_NO_STATS
        ++_good_sentences;
#endif
        _last_time_fix = _new_time_fix;
        _last_position_fix = _new_position_fix;

        switch(_sentence_type)
        {
        case _GPS_SENTENCE_GPRMC:
          _time      = _new_time;
          _date      = _new_date;
          _latitude  = _new_latitude;
          _longitude = _new_longitude;
          _speed     = _new_speed;
          _course    = _new_course;
          break;
        case _GPS_SENTENCE_GPGGA:
          _altitude  = _new_altitude;
          _time      = _new_time;
          _latitude  = _new_latitude;
          _longitude = _new_longitude;
          break;
        }

        return true;
      }
    }

#ifndef _GPS_NO_STATS
    else
      ++_failed_checksum;
#endif
    return false;
  }

  // the first term determines the sentence type
  if (_term_number == 0)
  {
    if (!gpsstrcmp(_term, _GPRMC_TERM))
      _sentence_type = _GPS_SENTENCE_GPRMC;
    else if (!gpsstrcmp(_term, _GPGGA_TERM))
      _sentence_type = _GPS_SENTENCE_GPGGA;
    else
      _sentence_type = _GPS_SENTENCE_OTHER;
    return false;
  }

  if (_sentence_type != _GPS_SENTENCE_OTHER && _term[0])
  switch((_sentence_type == _GPS_SENTENCE_GPGGA ? 200 : 100) + _term_number)
  {
    case 101: // Time in both sentences
    case 201:
      _new_time = parse_decimal();
      _new_time_fix = millis();
      break;
    case 102: // GPRMC validity
      _gps_data_good = _term[0] == 'A';
      break;
    case 103: // Latitude
    case 202:
      _new_latitude = parse_degrees();
      _new_position_fix = millis();
      break;
    case 104: // N/S
    case 203:
      if (_term[0] == 'S')
        _new_latitude = -_new_latitude;
      break;
    case 105: // Longitude
    case 204:
      _new_longitude = parse_degrees();
      break;
    case 106: // E/W
    case 205:
      if (_term[0] == 'W')
        _new_longitude = -_new_longitude;
      break;
    case 107: // Speed (GPRMC)
      _new_speed = parse_decimal();
      break;
    case 108: // Course (GPRMC)
      _new_course = parse_decimal();
      break;
    case 109: // Date (GPRMC)
      _new_date = gpsatol(_term);
      break;
    case 206: // Fix data (GPGGA)
      _gps_data_good = _term[0] > '0';
      break;
    case 209: // Altitude (GPGGA)
      _new_altitude = parse_decimal();
      break;
  }

  return false;
}

long TinyGPS::gpsatol(const char *str)
{
  long ret = 0;
  while (gpsisdigit(*str))
    ret = 10 * ret + *str++ - '0';
  return ret;
}

int TinyGPS::gpsstrcmp(const char *str1, const char *str2)
{
  while (*str1 && *str1 == *str2)
    ++str1, ++str2;
  return *str1;
}

/* static */
float TinyGPS::distance_between (float lat1, float long1, float lat2, float long2) 
{
  // returns distance in meters between two positions, both specified 
  // as signed decimal-degrees latitude and longitude. Uses great-circle 
  // distance computation for hypothetical sphere of radius 6372795 meters.
  // Because Earth is no exact sphere, rounding errors may be up to 0.5%.
  // Courtesy of Maarten Lamers
  float delta = radians(long1-long2);
  float sdlong = sin(delta);
  float cdlong = cos(delta);
  lat1 = radians(lat1);
  lat2 = radians(lat2);
  float slat1 = sin(lat1);
  float clat1 = cos(lat1);
  float slat2 = sin(lat2);
  float clat2 = cos(lat2);
  delta = (clat1 * slat2) - (slat1 * clat2 * cdlong); 
  delta = sq(delta); 
  delta += sq(clat2 * sdlong); 
  delta = sqrt(delta); 
  float denom = (slat1 * slat2) + (clat1 * clat2 * cdlong); 
  delta = atan2(delta, denom); 
  return delta * 6372795; 
}
#ifndef TinyGPS_h
#define TinyGPS_h

#include "Arduino.h"

#define _GPS_VERSION 10 // software version of this library
#define _GPS_MPH_PER_KNOT 1.15077945
#define _GPS_MPS_PER_KNOT 0.51444444
#define _GPS_KMPH_PER_KNOT 1.852
#define _GPS_MILES_PER_METER 0.00062137112
#define _GPS_KM_PER_METER 0.001
//#define _GPS_NO_STATS

class TinyGPS
{
  public:
    TinyGPS();
    bool encode(char c); // process one character received from GPS
    TinyGPS &operator << (char c) {encode(c); return *this;}
    
    // lat/long in hundred thousandths of a degree and age of fix in milliseconds
    inline void get_position(long *latitude, long *longitude, unsigned long *fix_age = 0)
    {
      if (latitude) *latitude = _latitude;
      if (longitude) *longitude = _longitude;
      if (fix_age) *fix_age = _last_position_fix == GPS_INVALID_FIX_TIME ? 
        GPS_INVALID_AGE : millis() - _last_position_fix;
    }

    // date as ddmmyy, time as hhmmsscc, and age in milliseconds
    inline void get_datetime(unsigned long *date, unsigned long *time, unsigned long *fix_age = 0)
    {
      if (date) *date = _date;
      if (time) *time = _time;
      if (fix_age) *fix_age = _last_time_fix == GPS_INVALID_FIX_TIME ? 
        GPS_INVALID_AGE : millis() - _last_time_fix;
    }

    // signed altitude in centimeters (from GPGGA sentence)
    inline long altitude() { return _altitude; }

    // course in last full GPRMC sentence in 100th of a degree
    inline unsigned long course() { return _course; }
    
    // speed in last full GPRMC sentence in 100ths of a knot
    unsigned long speed() { return _speed; }

#ifndef _GPS_NO_STATS
    void stats(unsigned long *chars, unsigned short *good_sentences, unsigned short *failed_cs);
#endif

    inline void f_get_position(float *latitude, float *longitude, unsigned long *fix_age = 0)
    {
      long lat, lon;
      get_position(&lat, &lon, fix_age);
      *latitude = lat / 100000.0;
      *longitude = lon / 100000.0;
    }

    inline void crack_datetime(int *year, byte *month, byte *day, 
      byte *hour, byte *minute, byte *second, byte *hundredths = 0, unsigned long *fix_age = 0)
    {
      unsigned long date, time;
      get_datetime(&date, &time, fix_age);
      if (year) 
      {
        *year = date % 100;
        *year += *year > 80 ? 1900 : 2000;
      }
      if (month) *month = (date / 100) % 100;
      if (day) *day = date / 10000;
      if (hour) *hour = time / 1000000;
      if (minute) *minute = (time / 10000) % 100;
      if (second) *second = (time / 100) % 100;
      if (hundredths) *hundredths = time % 100;
    }

    inline float f_altitude()    { return altitude() / 100.0; }
    inline float f_course()      { return course() / 100.0; }
    inline float f_speed_knots() { return speed() / 100.0; }
    inline float f_speed_mph()   { return _GPS_MPH_PER_KNOT * f_speed_knots(); }
    inline float f_speed_mps()   { return _GPS_MPS_PER_KNOT * f_speed_knots(); }
    inline float f_speed_kmph()  { return _GPS_KMPH_PER_KNOT * f_speed_knots(); }

    static int library_version() { return _GPS_VERSION; }

    enum {GPS_INVALID_AGE = 0xFFFFFFFF, GPS_INVALID_ANGLE = 999999999, GPS_INVALID_ALTITUDE = 999999999, GPS_INVALID_DATE = 0,
      GPS_INVALID_TIME = 0xFFFFFFFF, GPS_INVALID_SPEED = 999999999, GPS_INVALID_FIX_TIME = 0xFFFFFFFF};


    static float distance_between (float lat1, float long1, float lat2, float long2);

private:
    enum {_GPS_SENTENCE_GPGGA, _GPS_SENTENCE_GPRMC, _GPS_SENTENCE_OTHER};
    
    // properties
    unsigned long _time, _new_time;
    unsigned long _date, _new_date;
    long _latitude, _new_latitude;
    long _longitude, _new_longitude;
    long _altitude, _new_altitude;
    unsigned long  _speed, _new_speed;
    unsigned long  _course, _new_course;

    unsigned long _last_time_fix, _new_time_fix;
    unsigned long _last_position_fix, _new_position_fix;

    // parsing state variables
    byte _parity;
    bool _is_checksum_term;
    char _term[15];
    byte _sentence_type;
    byte _term_number;
    byte _term_offset;
    bool _gps_data_good;

#ifndef _GPS_NO_STATS
    // statistics
    unsigned long _encoded_characters;
    unsigned short _good_sentences;
    unsigned short _failed_checksum;
    unsigned short _passed_checksum;
#endif

    // internal utilities
    int from_hex(char a);
    unsigned long parse_decimal();
    unsigned long parse_degrees();
    bool term_complete();
    bool gpsisdigit(char c) { return c >= '0' && c <= '9'; }
    long gpsatol(const char *str);
    int gpsstrcmp(const char *str1, const char *str2);
};

// Arduino 0012 workaround
#undef int
#undef char
#undef long
#undef byte
#undef float
#undef abs
#undef round 

#endif

SoftwareSerial doesn’t work very well at speeds above 9600

Pete.

thank you pete, it seems still give me the same error. here’s a picture of my error.

Have you also told the HC-05 to use 9600?

Pete.

yes.

//Bluetooth
  bluetoothSerial.begin(9600);
  Blynk.begin(bluetoothSerial, auth);

That tells the Arduino to talk to the HC-05 at 9600.
It does not tell the HC0-05 to listen and reply at 9600

Pete.

thank you pete for the clarification, how would I tell the hc-05 to listen/ reply?

Using an AT command.
How you do that will depend on the hardware you have to connect the HC-05 to your computer and issue the commands via a serial console.
If you do some googling you’ll find the commands you need and hardware suggestions.

Pete.